Software Testing Class

Big Data Testing Tutorial

Like any other application testing, Big Data Testing Tutorial refers to the testing of the Bigdata applications. As we know that Bigdata deals with the storage and retrieval of the voluminous data involving large datasets and therefore, the Bigdata application testing cannot be conducted using traditional testing techniques. There are various tools, techniques, and frameworks that are available in the software industries to test the Bigdata applications which involve the testing of data creation, storage, retrieval, and analysis in terms of variety, volume, and velocity. In this tutorial, we are going to discuss in detail the following.

 

Big Data Testing Strategy

Big data testing relies more on data verification than testing the individual features of any software application. The data verification involves both functional as well as performance testing.  The data verification is conducted on the processing of application data in terabytes size by using a commodity cluster, where the data processing can be of three types i.e. batch processing, real-time processing, and interactive processing.

Big Data Testing Tutorial

Data quality testing is another important factor in Hadoop testing which can be considered as a part of database testing where a tester tests the various database characteristics such as accuracy, conformity, consistency, data completeness, duplication, validity, etc.

 

Testing of the Hadoop Applications

In Big Data Testing Tutorial, the testing of Bigdata applications can be divided into the following three steps.

Step 1: Validation of Data Staging, this step is also referred to as the pre-Hadoop stage which involves the following process validation.

Step 2: Validation of “MapReduce”, in this step the actual business logic is verified that involves the validation at each node in the cluster ensuring the following things.

Step 3: Output data Validation step, this is the final step of the Bigdata testing where the validation of the output data files is conducted. These output data files are ready to get moved out to an EDW (Enterprise Data Warehouse) or any other data management system as per the requirements. This step includes the following activities.

 

Big Data Applications Architecture Testing

As we know the Hadoop system is well known to process the voluminous data in its entirety and therefore, in order to avoid any bottleneck in terms of resources and the system performance, a well-defined architecture testing is required. A successful architecture testing will definitely lead to a successful Big Data project. A Bigdata project requires a bare minimum Performance and Failover testing to ensure architectural testing. Like any other, non-functional or performance testing, the Bigdata performance testing deals with the testing of the memory utilization, data processing throughput, job completion time, CPU utilization, etc. On the other hand, the Failover testing deals to verify that the data processing occurs flawlessly in the event of one or more data nodes failure.

 

Big Data Applications Performance Testing

Bigdata performance Testing involves the following two main actions.

 

Big Data Applications Performance Testing Approach

 

Parameters for Performance Testing

 

Big Data Applications Test Environment Needs

In Big Data Testing Tutorial, the test environment requires the following setup.

 

Big Data Testing Tools used in Scenarios

The following tools can be used based on the Bigdata cluster.

Bigdata Cluster Bigdata Tools
NoSQL Cassandra CouchDB DatabasesMongoDB HBase Redis ZooKeeper
MapReduce Cascading Flume Kafka Hadoop Hive Oozie Pig MapR S4
Processing BigSheets Datameer Mechanical Turk R Yahoo! Pipes
Servers Elastic EC2 Google App Engine Heroku
Storage S3 HDFS
 

Challenges faced during Big Data Testing

There are various challenges which are faced during the Bigdata application testing such as automation, creating the virtualization test scenarios, and preparing the large data sets. The testers are advised to use the appropriate tools as specified before and try to minimize the manual workaround in order to overcome the testing challenges and procuring the best test results.

 

Conclusion:

In Big Data Testing Tutorial, we discussed in detail the Bigdata application testing approaches, techniques, and challenges.


⇓ Subscribe Us ⇓


If you are not regular reader of this website then highly recommends you to Sign up for our free email newsletter!! Sign up just providing your email address below:


 

Check email in your inbox for confirmation to get latest updates Software Testing for free.


  Happy Testing!!!
 

Big Data Course Syllabus


TutorialIntroduction to BigData
TutorialIntroduction to Hadoop Architecture, and Components
TutorialHadoop installation on Windows
TutorialHDFS Read & Write Operation using Java API
TutorialHadoop MapReduce
TutorialHadoop MapReduce First Program
TutorialHadoop MapReduce and Counter
TutorialApache Sqoop
TutorialApache Flume
TutorialHadoop Pig
TutorialApache Oozie
TutorialBig Data Testing

Exit mobile version